133 research outputs found

    The self-excitation damping ratio: A chatter criterion for time-domain milling simulations

    Get PDF
    Regenerative chatter is known to be a key factor that limits the productivity of high speed machining. Consequently, a great deal of research has focused on developing predictive models of milling dynamics, to aid engineers involved in both research and manufacturing practice. Time-domain models suffer from being computationally intensive, particularly when they are used to predict the boundary of chatter stability, when a large number of simulation runs are required under different milling conditions. Furthermore, to identify the boundary of stability each simulation must run for sufficient time for the chatter effect to manifest itself in the numerical data, and this is a major contributor to the inefficiency of the chatter prediction process. In the present article, a new chatter criterion is proposed for time-domain milling simulations, that aims to overcome this draw-back by considering the transient response of the modeled behavior, rather than the steady-state response. Using a series of numerical investigations, it is shown that in many cases the new criterion can enable the numerical prediction to be computed more than five times faster than was previously possible. In addition, the analysis yields greater detail concerning the nature of the chatter vibrations, and the degree of stability that is observed

    The effect of Duffing-type non-linearities and Coulomb damping on the response of an energy harvester to random excitations

    Get PDF
    Linear energy harvesters can only produce useful amounts of power when excited close to their natural frequency. Due to the uncertain nature of ambient vibrations, it has been hypothesised that such devices will perform poorly in real-world applications. To improve performance, it has been suggested that the introduction of non-linearities into such devices may extend the bandwidth over which they perform effectively. In this study, a magnetic levitation device with non-linearities similar to the Duffing oscillator is considered. The governing equations of the device are formed in which the effects of friction are considered. Analytical solutions are used to explore the effect that friction can have on the system when it is under harmonic excitations. Following this, a numerical model is formed. A differential evolution algorithm is used alongside experimental data to identify the relevant parameters of the device. The model is then validated using experimental data. Monte Carlo simulations are then used to analyse the effect of coulomb damping and Duffing-type non-linearities when the device is subjected to broadband white noise and coloured noise excitations. </jats:p

    Vibration absorbers for chatter suppression: A new analytical tuning methodology

    Get PDF
    Vibration absorbers have been widely used to suppress undesirable vibrations in machining operations, with a particular emphasis on avoiding chatter. However, it is well known that for vibration absorbers to function effectively their stiffness and damping must be accurately tuned based upon the natural frequency of the vibrating structure. For general vibration problems, suitable tuning strategies were developed by Den Hartog and Brock over 50 years ago. However, the special nature of the chatter stability problem means that this classical tuning methodology is no longer optimal. Consequently, vibration absorbers for chatter mitigation have generally been tuned using ad hoc methods, or numerical or graphical approaches. The present article introduces a new analytical solution to this problem, and demonstrates its performance using time domain milling simulations. A 40-50% improvement in the critical limiting depth of cut is observed, compared to the classically tuned vibration absorber. © 2006 Elsevier Ltd. All rights reserved

    Chatter, process damping, and chip segmentation in turning: A signal processing approach

    Get PDF
    An increasing number of aerospace components are manufactured from titanium and nickel alloys that are difficult to machine due to their thermal and mechanical properties. This limits the metal removal rates that can be achieved from the production process. However, under these machining conditions the phenomenon of process damping can be exploited to help avoid self-excited vibrations known as regenerative chatter. This means that greater widths of cut can be taken so as to increase the metal removal rate, and hence offset the cutting speed restrictions that are imposed by the thermo-mechanical properties of the material. However, there is little or no consensus as to the underlying mechanisms that cause process damping. The present study investigates two process damping mechanisms that have previously been proposed in the machining literature: the tool flank/workpiece interference effect, and the short regenerative effect. A signal processing procedure is employed to identify flank/workpiece interference from experimental data. Meanwhile, the short regenerative model is solved using a new frequency domain approach that yields additional insight into its stabilising effect. However, analysis and signal processing of the experimentally obtained data reveals that neither of these models can fully explain the increases in stability that are observed in practice. Meanwhile, chip segmentation effects were observed in a number of measurements, and it is suggested that segmentation could play an important role in the process-damped chatter stability of these materials

    The role of tool geometry in process damped milling

    Get PDF
    The complex interaction between machining structural systems and the cutting process results in machining instability, so called chatter. In some milling scenarios, process damping is a useful phenomenon that can be exploited to mitigate chatter and hence improve productivity. In the present study, experiments are performed to evaluate the performance of process damped milling considering different tool geometries (edge radius, rake and relief angles and variable helix/pitch). The results clearly indicate that variable helix/pitch angles most significantly increase process damping performance. Additionally, increased cutting edge radius moderately improves process damping performance, while rake and relief angles have a smaller and closely coupled effect

    Improving the vibration suppression capabilities of a magneto-rheological damper using hybrid active and semi-active control

    Get PDF
    This paper presents a new hybrid active & semi-active control method for vibration suppression in flexible structures. The method uses a combination of a semi-active device and an active control actuator situated elsewhere in the structure to suppress vibrations. The key novelty is to use the hybrid controller to enable the magneto-rheological damper to achieve a performance as close to a fully active device as possible. This is achieved by ensuring that the active actuator can assist the magneto-rheological damper in the regions where energy is required. In addition, the hybrid active & semi-active controller is designed to minimize the switching of the semi-active controller. The control framework used is the immersion and invariance control technique in combination with sliding mode control. A two degree-of-freedom system with lightly damped resonances is used as an example system. Both numerical and experimental results are generated for this system, and then compared as part of a validation study. The experimental system uses hardware-in-the-loop to simulate the effect of both the degrees-of-freedom. The results show that the concept is viable both numerically and experimentally, and improved vibration suppression results can be obtained for the magneto-rheological damper that approach the performance of an active device
    • …
    corecore